设为首页 加入收藏 网站地图

朱程亮

日期:2024年08月29日 17:23来源: 作者: 关注:

4EB5C5朱程亮,男,1986年2月出生,博士,副教授,博士生导师。



联系方式

联系电话:18302478766

电子邮件:zhuchengliang@neuq.edu.cn




研究方向先进光纤器件与传感研究室,面向智能光传感系统与超大容量光通信系统,围绕光纤器件,开展以下方面研究。 

1.新型光子器件最优化设计与先进制备

2.光纤传感理论与智能检测技术

3.光子角动量(轨道/自旋)模式生成与应用

4.特种材料与器件全自动化测试

5.微波光子学及其传感应用


教育背景

2006.04-2010.03 日本国立静冈大学 系统工学(光电系统) 学士(工学)

2010.04-2012.03 日本国立静冈大学 系统工学(光电系统) 硕士(工学)

2016.10-2019.09 日本国立静冈大学 光电子及纳米结构科学 博士(工学)


工作履历

2012.04-2016.05  Makita株式会社 日本总部 研发工程师(终身制职员)

2016.10-2019.09 日本国立静冈大学 创造科学技术大学院 学术研究员(兼职)

2016.10-2019.09 日本国立静冈大学 工学部 研究助手(兼职)

2019.12-至今    东北大学 秦皇岛分校 副教授


学术兼职

中国光学学会会员

The Institute of Electrical and Electronics Engineers (IEEE) 会员。

Institute of Electronics, Information and Communication Engineers (IEICE)会员。

MDPI SENSORS、Frontiers in Sensors期刊编辑

Optics Letters,Optics Express,IEEE/OPTICA Journal of Lightwave Technology,IEEE Photonics Technology Letters,Infrared Physics and Technology,Optics Communications,Optical fiber technology等SCI期刊审稿人。


科研项目

1.河北省自然科学基金,面上项目,2024-2026,主持

2.国家自然科学基金,联合基金项目,2023-2026,参与

3.教育部中央高校基本业务费,培育项目,2022-2023,主持

4.日本文部科学省基盤研究项目B,2022-2024,参与

5.国家自然科学基金,青年项目,2021-2023,主持

6.河北省教育厅高等学校科学研究,青年拔尖人才计划项目,2021-2023,主持

7.河北省自然科学基金,绿色通道项目,2020-2022,主持

8.日本KDDI财团研究助成项目,2019-2020,参与

9.日本电气通信普及财团研究助成项目,2018-2019,参与

10.日本板硝子材料工学助成会研究助成项目,2018-2019,参与

11.日本卡西欧科学振兴财团研究助成项目,2016-2017,参与

12.日本电信电话株式会社(NTT)合作研究项目,2010-2012,参与

13.日本文部科学省基盤研究项目C,2008-2010,参与


奖励与荣誉

2019 年度日本电子情报通信学会博士研究奖励赏,日本电子情报通信学会东海支部;(日本东海地区唯一获奖博士)

2019年度Dean's award for graduate school of science and technology, Shizuoka University. (唯一获奖博士)


学术成果

【论文、专著与专利等】

研究成果在主流SCI期刊,如Optics Letters,IEEE/OPTICA Journal of Lightwave Technology, Optics Express, IEEE Transactions on Instrumentation and Measurement,Optics and Laser Technology, IEEE Journal of Quantum Electronic, IEEE Photonics Technology Letters, IEEE Photonics Journal等以及IEEE,OPTICA,SPIE,IEICE等学会举办的国际会议发表论文60余篇,申请日本及中国专利6项,在SPIE/COS Photonics Asia、SPIE IACOP、全国光子学学术会议等作特邀报告4次。


【代表性学术论文】

*代表性SCI期刊论文*

[1]Zhu Chengliang*, et al. Ultrahigh-channel-count OAM mode conversion utilizing a hybrid few-mode fiber configuration, Optics Letters, 2024, 49(16), 4626-4629.

[2]Zhu Chengliang*, et al. Generation of optical vortex beams with bandwidth exceeding 550 nm using a helical fiber needle exhibiting strong mode coupling, Optics Letters, 2024, 49(10), 2561-2564. 【Editor’s Pick】

[3]Zhu Chengliang*, et al. Deeply-tapered ultrashort long-period fiber grating and its application to ultrasensitive transverse-load sensor. IEEE/OPTICA Journal of Lightwave Technology, 2023, 41(18): 6108-6115.

[4]Zhu Chengliang*, et al. Ultra-wideband OAM mode generator based on a helical grating written in a graded-index few-mode fiber. IEEE/OPTICA Journal of Lightwave Technology, 2023, 41(5):1533-1538.

[5]Zhu Chengliang*, et al. Miniature temperature-independent curvature sensor based on a phase-shifted long-period fiber grating using deep tapering. IEEE Sensors Journal, 2023, 30(19): 14174-14181.

[6]Zhu Chengliang*, et al. Cross-sensitivity-free highly sensitive torsion and strain sensor based on concatenated DTP-customizable helical fiber gratings. IEEE Sensors Journal, 2023, 23(22): 27423-27430.

[7]Zhu Chengliang, et al. On-demand flat-top wideband OAM mode converter based on a cladding-etched helical fiber grating. Optics express, 2023, 31(26): 43477-43489.

[8]Zhu Chengliang, et al. Ultra-broad edge filter based on a periodically twisted graded-index fiber and its application to power-interrogated temperature sensor. Optics express, 2022, 30(19): 34776-34786.

[9]Zhu Chengliang*, et al. Reflective-type multiparameter sensor based on a paired helical fiber gratings and a trapezoid-Like micro cavity. IEEE Transactions on Instrumentation and Measurement, 2022, 70, 7001607.

[10]Zhu Chengliang, et al. Optimal design and fabrication of multichannel helical long-period fiber gratings based on phase-only sampling method. Optics express, 2019, 27(3): 2281-2291.

[11]Zhu Chengliang, et al. Multichannel long-period fiber grating realized by using the helical sampling approach. IEEE/OPTICA Journal of Lightwave Technology, 2019, 37(9): 2008-2013.

[12]Zhu Chengliang, et al. Phase-Inserted Fiber Gratings and Their Applications to Optical Filtering, Optical Signal Processing, and Optical Sensing: Review. Photonics, 2022, 9(4): 271. 【EDITOR'S CHOICE ARTICLES】

[13]Zhu Chengliang*, et al. Simultaneous measurement of directional torsion and temperature by using a DC-sampled helical long-period fiber grating. Optics and Laser Technology, 2021, 142: 1-7.

[14]Zhu Chengliang, et al. DC-Sampled Helical Fiber Grating and its Application to Multi-Channel OAM Generator. IEEE Photonics Technology Letters, 2019, 31(17): 1445-1448.

[15]Zhu Chengliang*, et al. Ultra-Broadband OAM Mode Generator Based on a Phase-Modulated Helical Grating Working at a High Radial-Order of Cladding Mode. IEEE Journal of Quantum Electronics, 2021, 57(4): 6800307.

[16]Zhu Chengliang, et al. All-fiber circular polarization filter realized by using helical long-period fiber gratings. IEEE Photonics Technology Letters, 2018, 30(22): 1905-1908.

[17]Zhu Chengliang*, et al. Dual-triangular filter based on an optimized phase-modulated helical fibre grating. Optics Communications, 2022, 503: 127452.

[18]Zhu Chengliang*, et al. Mode-couplings in two cascaded helical long-period fibre gratings and their application to polarization-insensitive band-rejection filter. Optics Communications, 2018, 423: 81-85.

[19]Zhu Chengliang, et al. Enhanced flat-top band-rejection filter based on reflective helical long-period fiber gratings. IEEE Photonics Technology Letters, 2017, 29(12): 964-966.


*代表性会议论文*

[1]Zhu Chengliang*, et al. “All-fiber flat-top orbital angular momentum mode converter realized by a SMF-based helical grating with phase modulation,” SPIE/COS Photonics Asia, 2021, 11902-23. 【Invited Paper】

[2]Zhu Chengliang*, et al. “Multichannel long-period fiber grating realized by using the helical sampling approach,” International Conference on Nano Electronics Research Education (ICNERE), 2018, P2-2. 【Invited Paper】

[3]Zhu Chengliang*, et al. “High-sensitivity intensity-interrogated temperature sensor based on phase-modulated grating in chalcogenide fiber” International Conference on Optical Fiber Sensors (OFS), 2023, Th6.54.

[4]Zhu Chengliang*, et al. “Wideband and polarization-insensitive band-rejection filter realized by using two cascaded helical long-period fibre gratings” Asia Communications and Photonics Conference (ACP), 2018, 491.

[5]Zhu Chengliang*, et al. “Multichannel helical long-period fiber grating realized by using the DC-sampling approach,” IEICE General Conference, paper: 2019,C-3-12.

[6]Zhu Chengliang*, et al. “All-fiber circular polarization converter based on utilization of two consecutively-cascaded helical long-period gratings,” IEICE Technical Committee on OptoElectronics, 2018, P3-7.

[7]Zhu Chengliang*, et al. “Polarization-independent flat-top band-rejection filter based on utilization of two successively-cascaded helical long-period fiber gratings,” IEICE Society Conference, 2017, C-3-12.

[8]Zhu Chengliang*, et al. “Characterization of a phase-shifted long-period fiber grating by using the imaging method,” IEICE General Conference, 2017, C-3-40.

[9]Zhu Chengliang, et al. “Coherent MPI Measurement method for Short BIF using Pulsed ASE Test Signal with Delay Reflector“, OptoElectronics and Communications Conference (OECC) 2011, 8B2_6.

[10]朱程亮, et al. “エルビウムドープ光ファイバ増幅器のASEを光源とするOTDRの実験的検討”, 日本電子情報通信学会総合大会, 2011, B-13-36.


【专利】

[1]朱程亮等, 一种超高信道数光纤轨道角动量模式转换器, 2024, 中国, 202411016475X. 

[2]朱程亮, 超宽带宽光纤边缘滤波器及功率解调传感系统, 2022, 中国, 202210661137.6. 

[3]朱程亮等, 一种新型长周期光纤光栅差分式强度解调传感系统, 2021, 中国, 202111281011.8. 

[4]朱程亮等, 一种同时测量扭转、温度和应变的反射式光纤传感器, 2021, 中国, 202111259735.2. 

[5]李洪谱; 朱程亮, 多通道光纤光栅、多通道光纤光栅的制造装置及制造方法, 2018-8-27, 日本, 18008RI001.


讲授课程情况

本科:《光纤通信》(校一流本科课程)、 《科技文献写作》

硕士:《论文写作指导》、《光纤通信技术》




下一条:冯亭

关闭

技术维护:东北大学研究生院秦皇岛分院       冀ICP备字05002793号

©Copyright 2017-2019       研究生分院  版权所有